aboutsummaryrefslogtreecommitdiff
path: root/TESTING/MATGEN/zlatm1.f
blob: aa0133a1412740f56fbe721bb282f0b96d5fdc18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
      SUBROUTINE ZLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, INFO )
*
*  -- LAPACK auxiliary test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     June 2010
*
*     .. Scalar Arguments ..
      INTEGER            IDIST, INFO, IRSIGN, MODE, N
      DOUBLE PRECISION   COND
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      COMPLEX*16         D( * )
*     ..
*
*  Purpose
*  =======
*
*     ZLATM1 computes the entries of D(1..N) as specified by
*     MODE, COND and IRSIGN. IDIST and ISEED determine the generation
*     of random numbers. ZLATM1 is called by CLATMR to generate
*     random test matrices for LAPACK programs.
*
*  Arguments
*  =========
*
*  MODE     (input) INTEGER
*           On entry describes how D is to be computed:
*           MODE = 0 means do not change D.
*           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
*           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
*           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
*           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
*           MODE = 5 sets D to random numbers in the range
*                    ( 1/COND , 1 ) such that their logarithms
*                    are uniformly distributed.
*           MODE = 6 set D to random numbers from same distribution
*                    as the rest of the matrix.
*           MODE < 0 has the same meaning as ABS(MODE), except that
*              the order of the elements of D is reversed.
*           Thus if MODE is positive, D has entries ranging from
*              1 to 1/COND, if negative, from 1/COND to 1,
*           Not modified.
*
*  COND     (input) DOUBLE PRECISION
*           On entry, used as described under MODE above.
*           If used, it must be >= 1. Not modified.
*
*  IRSIGN   (input) INTEGER
*           On entry, if MODE neither -6, 0 nor 6, determines sign of
*           entries of D
*           0 => leave entries of D unchanged
*           1 => multiply each entry of D by random complex number
*                uniformly distributed with absolute value 1
*
*  IDIST    (input) CHARACTER*1
*           On entry, IDIST specifies the type of distribution to be
*           used to generate a random matrix .
*           1 => real and imaginary parts each UNIFORM( 0, 1 )
*           2 => real and imaginary parts each UNIFORM( -1, 1 )
*           3 => real and imaginary parts each NORMAL( 0, 1 )
*           4 => complex number uniform in DISK( 0, 1 )
*           Not modified.
*
*  ISEED    (input/output) INTEGER array, dimension ( 4 )
*           On entry ISEED specifies the seed of the random number
*           generator. The random number generator uses a
*           linear congruential sequence limited to small
*           integers, and so should produce machine independent
*           random numbers. The values of ISEED are changed on
*           exit, and can be used in the next call to ZLATM1
*           to continue the same random number sequence.
*           Changed on exit.
*
*  D        (input/output) COMPLEX*16 array, dimension ( MIN( M , N ) )
*           Array to be computed according to MODE, COND and IRSIGN.
*           May be changed on exit if MODE is nonzero.
*
*  N        (input) INTEGER
*           Number of entries of D. Not modified.
*
*  INFO     (output) INTEGER
*            0  => normal termination
*           -1  => if MODE not in range -6 to 6
*           -2  => if MODE neither -6, 0 nor 6, and
*                  IRSIGN neither 0 nor 1
*           -3  => if MODE neither -6, 0 nor 6 and COND less than 1
*           -4  => if MODE equals 6 or -6 and IDIST not in range 1 to 4
*           -7  => if N negative
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   ALPHA, TEMP
      COMPLEX*16         CTEMP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLARAN
      COMPLEX*16         ZLARND
      EXTERNAL           DLARAN, ZLARND
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLARNV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, EXP, LOG
*     ..
*     .. Executable Statements ..
*
*     Decode and Test the input parameters. Initialize flags & seed.
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Set INFO if an error
*
      IF( MODE.LT.-6 .OR. MODE.GT.6 ) THEN
         INFO = -1
      ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $         ( IRSIGN.NE.0 .AND. IRSIGN.NE.1 ) ) THEN
         INFO = -2
      ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $         COND.LT.ONE ) THEN
         INFO = -3
      ELSE IF( ( MODE.EQ.6 .OR. MODE.EQ.-6 ) .AND.
     $         ( IDIST.LT.1 .OR. IDIST.GT.4 ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -7
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLATM1', -INFO )
         RETURN
      END IF
*
*     Compute D according to COND and MODE
*
      IF( MODE.NE.0 ) THEN
         GO TO ( 10, 30, 50, 70, 90, 110 )ABS( MODE )
*
*        One large D value:
*
   10    CONTINUE
         DO 20 I = 1, N
            D( I ) = ONE / COND
   20    CONTINUE
         D( 1 ) = ONE
         GO TO 120
*
*        One small D value:
*
   30    CONTINUE
         DO 40 I = 1, N
            D( I ) = ONE
   40    CONTINUE
         D( N ) = ONE / COND
         GO TO 120
*
*        Exponentially distributed D values:
*
   50    CONTINUE
         D( 1 ) = ONE
         IF( N.GT.1 ) THEN
            ALPHA = COND**( -ONE / DBLE( N-1 ) )
            DO 60 I = 2, N
               D( I ) = ALPHA**( I-1 )
   60       CONTINUE
         END IF
         GO TO 120
*
*        Arithmetically distributed D values:
*
   70    CONTINUE
         D( 1 ) = ONE
         IF( N.GT.1 ) THEN
            TEMP = ONE / COND
            ALPHA = ( ONE-TEMP ) / DBLE( N-1 )
            DO 80 I = 2, N
               D( I ) = DBLE( N-I )*ALPHA + TEMP
   80       CONTINUE
         END IF
         GO TO 120
*
*        Randomly distributed D values on ( 1/COND , 1):
*
   90    CONTINUE
         ALPHA = LOG( ONE / COND )
         DO 100 I = 1, N
            D( I ) = EXP( ALPHA*DLARAN( ISEED ) )
  100    CONTINUE
         GO TO 120
*
*        Randomly distributed D values from IDIST
*
  110    CONTINUE
         CALL ZLARNV( IDIST, ISEED, N, D )
*
  120    CONTINUE
*
*        If MODE neither -6 nor 0 nor 6, and IRSIGN = 1, assign
*        random signs to D
*
         IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $       IRSIGN.EQ.1 ) THEN
            DO 130 I = 1, N
               CTEMP = ZLARND( 3, ISEED )
               D( I ) = D( I )*( CTEMP / ABS( CTEMP ) )
  130       CONTINUE
         END IF
*
*        Reverse if MODE < 0
*
         IF( MODE.LT.0 ) THEN
            DO 140 I = 1, N / 2
               CTEMP = D( I )
               D( I ) = D( N+1-I )
               D( N+1-I ) = CTEMP
  140       CONTINUE
         END IF
*
      END IF
*
      RETURN
*
*     End of ZLATM1
*
      END