aboutsummaryrefslogtreecommitdiff
path: root/risugen_s390x.pm
blob: 260e2ddbd944b4de9587c00a9ad0a3e0cba06c6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/perl -w
###############################################################################
# Copyright 2023 Red Hat Inc.
# All rights reserved. This program and the accompanying materials
# are made available under the terms of the Eclipse Public License v1.0
# which accompanies this distribution, and is available at
# http://www.eclipse.org/legal/epl-v10.html
#
# Contributors:
#     Thomas Huth - initial implementation (based on risugen_ppc64.pm etc.)
###############################################################################

# risugen -- generate a test binary file for use with risu
# See 'risugen --help' for usage information.
package risugen_s390x;

use strict;
use warnings;

use risugen_common;

require Exporter;

our @ISA    = qw(Exporter);
our @EXPORT = qw(write_test_code);

my $periodic_reg_random = 1;

# Maximum alignment restriction permitted for a memory op.
my $MAXALIGN = 64;

sub write_mov_ri($$$)
{
    my ($r, $imm_h, $imm_l) = @_;

    # LGFI
    insn16(0xc0 << 8 | $r << 4 | 0x1);
    insn32($imm_l);
    # IIHF r,imm_high
    insn16(0xc0 << 8 | $r << 4 | 0x8);
    insn32($imm_h);
}

sub write_mov_fp($$)
{
    my ($r, $imm) = @_;

    write_mov_ri(0, ~$imm, $imm);
    # LDGR
    insn32(0xb3c1 << 16 | $r << 4);
}

sub write_random_regdata()
{
    # Floating point registers
    for (my $i = 0; $i < 16; $i++) {
        write_mov_fp($i, rand(0xffffffff));
    }

    # Load FPC (via r0)
    write_mov_ri(0, 0, (rand(0xffffffff) & 0x00fcff77));
    insn32(0xb3840000);

    # general purpose registers
    for (my $i = 0; $i < 16; $i++) {
        write_mov_ri($i, rand(0xffffffff), rand(0xffffffff));
    }
}

my $OP_COMPARE = 0;        # compare registers
my $OP_TESTEND = 1;        # end of test, stop

sub write_random_register_data()
{
    write_random_regdata();
    write_risuop($OP_COMPARE);
}

sub gen_one_insn($$)
{
    # Given an instruction-details array, generate an instruction
    my $constraintfailures = 0;

    INSN: while(1) {
        my ($forcecond, $rec) = @_;
        my $insn = int(rand(0xffffffff));
        my $insnname = $rec->{name};
        my $insnwidth = $rec->{width};
        my $fixedbits = $rec->{fixedbits};
        my $fixedbitmask = $rec->{fixedbitmask};
        my $constraint = $rec->{blocks}{"constraints"};
        my $memblock = $rec->{blocks}{"memory"};

        $insn &= ~$fixedbitmask;
        $insn |= $fixedbits;

        if (defined $constraint) {
            # user-specified constraint: evaluate in an environment
            # with variables set corresponding to the variable fields.
            my $v = eval_with_fields($insnname, $insn, $rec, "constraints", $constraint);
            if (!$v) {
                $constraintfailures++;
                if ($constraintfailures > 10000) {
                    print "10000 consecutive constraint failures for $insnname constraints string:\n$constraint\n";
                    exit (1);
                }
                next INSN;
            }
        }

        # OK, we got a good one
        $constraintfailures = 0;

        my $basereg;

        if (defined $memblock) {
            die "memblock handling has not been implemented yet."
        }

        if ($insnwidth == 16) {
            insn16(($insn >> 16) & 0xffff);
        } else {
            insn32($insn);
        }

        return;
    }
}

sub write_risuop($)
{
    my ($op) = @_;
    insn32(0x835a0f00 | $op);
}

sub write_test_code($)
{
    my ($params) = @_;

    my $condprob = $params->{ 'condprob' };
    my $numinsns = $params->{ 'numinsns' };
    my $outfile = $params->{ 'outfile' };

    my %insn_details = %{ $params->{ 'details' } };
    my @keys = @{ $params->{ 'keys' } };

    set_endian(1);

    open_bin($outfile);

    # convert from probability that insn will be conditional to
    # probability of forcing insn to unconditional
    $condprob = 1 - $condprob;

    # TODO better random number generator?
    srand(0);

    print "Generating code using patterns: @keys...\n";
    progress_start(78, $numinsns);

    if (grep { defined($insn_details{$_}->{blocks}->{"memory"}) } @keys) {
        write_memblock_setup();
    }

    # memblock setup doesn't clean its registers, so this must come afterwards.
    write_random_register_data();

    for my $i (1..$numinsns) {
        my $insn_enc = $keys[int rand (@keys)];
        #dump_insn_details($insn_enc, $insn_details{$insn_enc});
        my $forcecond = (rand() < $condprob) ? 1 : 0;
        gen_one_insn($forcecond, $insn_details{$insn_enc});
        write_risuop($OP_COMPARE);
        # Rewrite the registers periodically. This avoids the tendency
        # for the VFP registers to decay to NaNs and zeroes.
        if ($periodic_reg_random && ($i % 100) == 0) {
            write_random_register_data();
        }
        progress_update($i);
    }
    write_risuop($OP_TESTEND);
    progress_end();
    close_bin();
}

1;