aboutsummaryrefslogtreecommitdiff
path: root/libffi/src/ia64/ffi.c
diff options
context:
space:
mode:
Diffstat (limited to 'libffi/src/ia64/ffi.c')
-rw-r--r--libffi/src/ia64/ffi.c670
1 files changed, 0 insertions, 670 deletions
diff --git a/libffi/src/ia64/ffi.c b/libffi/src/ia64/ffi.c
deleted file mode 100644
index bb4fbb73a72..00000000000
--- a/libffi/src/ia64/ffi.c
+++ /dev/null
@@ -1,670 +0,0 @@
-/* -----------------------------------------------------------------------
- ffi.c - Copyright (c) 1998 Cygnus Solutions
- Copyright (c) 2000 Hewlett Packard Company
-
- IA64 Foreign Function Interface
-
- Permission is hereby granted, free of charge, to any person obtaining
- a copy of this software and associated documentation files (the
- ``Software''), to deal in the Software without restriction, including
- without limitation the rights to use, copy, modify, merge, publish,
- distribute, sublicense, and/or sell copies of the Software, and to
- permit persons to whom the Software is furnished to do so, subject to
- the following conditions:
-
- The above copyright notice and this permission notice shall be included
- in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
- OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
- OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- OTHER DEALINGS IN THE SOFTWARE.
- ----------------------------------------------------------------------- */
-
-#include <ffi.h>
-#include <ffi_common.h>
-
-#include <stdlib.h>
-
-#include "ia64_flags.h"
-
-/* Memory image of fp register contents. Should eventually be an fp */
-/* type long enough to hold an entire register. For now we use double. */
-typedef double float80;
-
-/* The stack layout at call to ffi_prep_regs. Other_args will remain */
-/* on the stack for the actual call. Everything else we be transferred */
-/* to registers and popped by the assembly code. */
-
-struct ia64_args {
- long scratch[2]; /* Two scratch words at top of stack. */
- /* Allows sp to passed as arg pointer. */
- void * r8_contents; /* Value to be passed in r8 */
- long spare; /* Not used. */
- float80 fp_regs[8]; /* Contents of 8 floating point argument */
- /* registers. */
- long out_regs[8]; /* Contents of the 8 out registers used */
- /* for integer parameters. */
- long other_args[0]; /* Arguments passed on stack, variable size */
- /* Treated as continuation of out_regs. */
-};
-
-static size_t float_type_size(unsigned short tp)
-{
- switch(tp) {
- case FFI_TYPE_FLOAT:
- return sizeof(float);
- case FFI_TYPE_DOUBLE:
- return sizeof(double);
-#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
- case FFI_TYPE_LONGDOUBLE:
- return sizeof(long double);
-#endif
- default:
- FFI_ASSERT(0);
- }
-}
-
-/*
- * Is type a struct containing at most n floats, doubles, or extended
- * doubles, all of the same fp type?
- * If so, set *element_type to the fp type.
- */
-static bool is_homogeneous_fp_aggregate(ffi_type * type, int n,
- unsigned short * element_type)
-{
- ffi_type **ptr;
- unsigned short element, struct_element;
-
- int type_set = 0;
-
- FFI_ASSERT(type != NULL);
-
- FFI_ASSERT(type->elements != NULL);
-
- ptr = &(type->elements[0]);
-
- while ((*ptr) != NULL)
- {
- switch((*ptr) -> type) {
- case FFI_TYPE_FLOAT:
- if (type_set && element != FFI_TYPE_FLOAT) return 0;
- if (--n < 0) return FALSE;
- type_set = 1;
- element = FFI_TYPE_FLOAT;
- break;
- case FFI_TYPE_DOUBLE:
- if (type_set && element != FFI_TYPE_DOUBLE) return 0;
- if (--n < 0) return FALSE;
- type_set = 1;
- element = FFI_TYPE_DOUBLE;
- break;
- case FFI_TYPE_STRUCT:
- if (!is_homogeneous_fp_aggregate(type, n, &struct_element))
- return FALSE;
- if (type_set && struct_element != element) return FALSE;
- n -= (type -> size)/float_type_size(element);
- element = struct_element;
- if (n < 0) return FALSE;
- break;
- /* case FFI_TYPE_LONGDOUBLE:
- Not yet implemented. */
- default:
- return FALSE;
- }
- ptr++;
- }
- *element_type = element;
- return TRUE;
-
-}
-
-/* ffi_prep_args is called by the assembly routine once stack space
- has been allocated for the function's arguments. Returns nonzero
- if fp registers are used for arguments. */
-
-static bool
-ffi_prep_args(struct ia64_args *stack, extended_cif *ecif, int bytes)
-{
- register long i, avn;
- register void **p_argv;
- register long *argp = stack -> out_regs;
- register float80 *fp_argp = stack -> fp_regs;
- register ffi_type **p_arg;
-
- /* For big return structs, r8 needs to contain the target address. */
- /* Since r8 is otherwise dead, we set it unconditionally. */
- stack -> r8_contents = ecif -> rvalue;
- i = 0;
- avn = ecif->cif->nargs;
- p_arg = ecif->cif->arg_types;
- p_argv = ecif->avalue;
- while (i < avn)
- {
- size_t z; /* z is in units of arg slots or words, not bytes. */
-
- switch ((*p_arg)->type)
- {
- case FFI_TYPE_SINT8:
- z = 1;
- *(SINT64 *) argp = *(SINT8 *)(* p_argv);
- break;
-
- case FFI_TYPE_UINT8:
- z = 1;
- *(UINT64 *) argp = *(UINT8 *)(* p_argv);
- break;
-
- case FFI_TYPE_SINT16:
- z = 1;
- *(SINT64 *) argp = *(SINT16 *)(* p_argv);
- break;
-
- case FFI_TYPE_UINT16:
- z = 1;
- *(UINT64 *) argp = *(UINT16 *)(* p_argv);
- break;
-
- case FFI_TYPE_SINT32:
- z = 1;
- *(SINT64 *) argp = *(SINT32 *)(* p_argv);
- break;
-
- case FFI_TYPE_UINT32:
- z = 1;
- *(UINT64 *) argp = *(UINT32 *)(* p_argv);
- break;
-
- case FFI_TYPE_SINT64:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_POINTER:
- z = 1;
- *(UINT64 *) argp = *(UINT64 *)(* p_argv);
- break;
-
- case FFI_TYPE_FLOAT:
- z = 1;
- if (fp_argp - stack->fp_regs < 8)
- {
- /* Note the conversion -- all the fp regs are loaded as
- doubles. */
- *fp_argp++ = *(float *)(* p_argv);
- }
- /* Also put it into the integer registers or memory: */
- *(UINT64 *) argp = *(UINT32 *)(* p_argv);
- break;
-
- case FFI_TYPE_DOUBLE:
- z = 1;
- if (fp_argp - stack->fp_regs < 8)
- *fp_argp++ = *(double *)(* p_argv);
- /* Also put it into the integer registers or memory: */
- *(double *) argp = *(double *)(* p_argv);
- break;
-
- case FFI_TYPE_STRUCT:
- {
- size_t sz = (*p_arg)->size;
- unsigned short element_type;
- z = ((*p_arg)->size + SIZEOF_ARG - 1)/SIZEOF_ARG;
- if (is_homogeneous_fp_aggregate(*p_arg, 8, &element_type)) {
- int i;
- int nelements = sz/float_type_size(element_type);
- for (i = 0; i < nelements; ++i) {
- switch (element_type) {
- case FFI_TYPE_FLOAT:
- if (fp_argp - stack->fp_regs < 8)
- *fp_argp++ = ((float *)(* p_argv))[i];
- break;
- case FFI_TYPE_DOUBLE:
- if (fp_argp - stack->fp_regs < 8)
- *fp_argp++ = ((double *)(* p_argv))[i];
- break;
- default:
- /* Extended precision not yet implemented. */
- abort();
- }
- }
- }
- /* And pass it in integer registers as a struct, with */
- /* its actual field sizes packed into registers. */
- memcpy(argp, *p_argv, (*p_arg)->size);
- }
- break;
-
- default:
- FFI_ASSERT(0);
- }
-
- argp += z;
- i++, p_arg++, p_argv++;
- }
- return (fp_argp != stack -> fp_regs);
-}
-
-/* Perform machine dependent cif processing */
-ffi_status
-ffi_prep_cif_machdep(ffi_cif *cif)
-{
- long i, avn;
- bool is_simple = TRUE;
- long simple_flag = FFI_SIMPLE_V;
- /* Adjust cif->bytes to include space for the 2 scratch words,
- r8 register contents, spare word,
- the 8 fp register contents, and all 8 integer register contents.
- This will be removed before the call, though 2 scratch words must
- remain. */
-
- cif->bytes += 4*sizeof(long) + 8 *sizeof(float80);
- if (cif->bytes < sizeof(struct ia64_args))
- cif->bytes = sizeof(struct ia64_args);
-
- /* The stack must be double word aligned, so round bytes up
- appropriately. */
-
- cif->bytes = ALIGN(cif->bytes, 2*sizeof(void*));
-
- avn = cif->nargs;
- if (avn <= 2) {
- for (i = 0; i < avn; ++i) {
- switch(cif -> arg_types[i] -> type) {
- case FFI_TYPE_SINT32:
- simple_flag = FFI_ADD_INT_ARG(simple_flag);
- break;
- case FFI_TYPE_SINT64:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_POINTER:
- simple_flag = FFI_ADD_LONG_ARG(simple_flag);
- break;
- default:
- is_simple = FALSE;
- }
- }
- } else {
- is_simple = FALSE;
- }
-
- /* Set the return type flag */
- switch (cif->rtype->type)
- {
- case FFI_TYPE_VOID:
- cif->flags = FFI_TYPE_VOID;
- break;
-
- case FFI_TYPE_STRUCT:
- {
- size_t sz = cif -> rtype -> size;
- unsigned short element_type;
-
- is_simple = FALSE;
- if (is_homogeneous_fp_aggregate(cif -> rtype, 8, &element_type)) {
- int nelements = sz/float_type_size(element_type);
- if (nelements <= 1) {
- if (0 == nelements) {
- cif -> flags = FFI_TYPE_VOID;
- } else {
- cif -> flags = element_type;
- }
- } else {
- switch(element_type) {
- case FFI_TYPE_FLOAT:
- cif -> flags = FFI_IS_FLOAT_FP_AGGREGATE | nelements;
- break;
- case FFI_TYPE_DOUBLE:
- cif -> flags = FFI_IS_DOUBLE_FP_AGGREGATE | nelements;
- break;
- default:
- /* long double NYI */
- abort();
- }
- }
- break;
- }
- if (sz <= 32) {
- if (sz <= 8) {
- cif->flags = FFI_TYPE_INT;
- } else if (sz <= 16) {
- cif->flags = FFI_IS_SMALL_STRUCT2;
- } else if (sz <= 24) {
- cif->flags = FFI_IS_SMALL_STRUCT3;
- } else {
- cif->flags = FFI_IS_SMALL_STRUCT4;
- }
- } else {
- cif->flags = FFI_TYPE_STRUCT;
- }
- }
- break;
-
- case FFI_TYPE_FLOAT:
- is_simple = FALSE;
- cif->flags = FFI_TYPE_FLOAT;
- break;
-
- case FFI_TYPE_DOUBLE:
- is_simple = FALSE;
- cif->flags = FFI_TYPE_DOUBLE;
- break;
-
- default:
- cif->flags = FFI_TYPE_INT;
- /* This seems to depend on little endian mode, and the fact that */
- /* the return pointer always points to at least 8 bytes. But */
- /* that also seems to be true for other platforms. */
- break;
- }
-
- if (is_simple) cif -> flags |= simple_flag;
- return FFI_OK;
-}
-
-extern int ffi_call_unix(bool (*)(struct ia64_args *, extended_cif *, int),
- extended_cif *, unsigned,
- unsigned, unsigned *, void (*)());
-
-void
-ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue)
-{
- extended_cif ecif;
- long simple = cif -> flags & FFI_SIMPLE;
-
- /* Should this also check for Unix ABI? */
- /* This is almost, but not quite, machine independent. Note that */
- /* we can get away with not caring about length of the result because */
- /* we assume we are little endian, and the result buffer is large */
- /* enough. */
- /* This needs work for HP/UX. */
- if (simple) {
- long (*lfn)() = (long (*)())fn;
- long result;
- switch(simple) {
- case FFI_SIMPLE_V:
- result = lfn();
- break;
- case FFI_SIMPLE_I:
- result = lfn(*(int *)avalue[0]);
- break;
- case FFI_SIMPLE_L:
- result = lfn(*(long *)avalue[0]);
- break;
- case FFI_SIMPLE_II:
- result = lfn(*(int *)avalue[0], *(int *)avalue[1]);
- break;
- case FFI_SIMPLE_IL:
- result = lfn(*(int *)avalue[0], *(long *)avalue[1]);
- break;
- case FFI_SIMPLE_LI:
- result = lfn(*(long *)avalue[0], *(int *)avalue[1]);
- break;
- case FFI_SIMPLE_LL:
- result = lfn(*(long *)avalue[0], *(long *)avalue[1]);
- break;
- }
- if ((cif->flags & ~FFI_SIMPLE) != FFI_TYPE_VOID && 0 != rvalue) {
- * (long *)rvalue = result;
- }
- return;
- }
- ecif.cif = cif;
- ecif.avalue = avalue;
-
- /* If the return value is a struct and we don't have a return
- value address then we need to make one. */
-
- if (rvalue == NULL && cif->rtype->type == FFI_TYPE_STRUCT)
- ecif.rvalue = alloca(cif->rtype->size);
- else
- ecif.rvalue = rvalue;
-
- switch (cif->abi)
- {
- case FFI_UNIX:
- ffi_call_unix(ffi_prep_args, &ecif, cif->bytes,
- cif->flags, rvalue, fn);
- break;
-
- default:
- FFI_ASSERT(0);
- break;
- }
-}
-
-/*
- * Closures represent a pair consisting of a function pointer, and
- * some user data. A closure is invoked by reinterpreting the closure
- * as a function pointer, and branching to it. Thus we can make an
- * interpreted function callable as a C function: We turn the interpreter
- * itself, together with a pointer specifying the interpreted procedure,
- * into a closure.
- * On X86, the first few words of the closure structure actually contain code,
- * which will do the right thing. On most other architectures, this
- * would raise some Icache/Dcache coherence issues (which can be solved, but
- * often not cheaply).
- * For IA64, function pointer are already pairs consisting of a code
- * pointer, and a gp pointer. The latter is needed to access global variables.
- * Here we set up such a pair as the first two words of the closure (in
- * the "trampoline" area), but we replace the gp pointer with a pointer
- * to the closure itself. We also add the real gp pointer to the
- * closure. This allows the function entry code to both retrieve the
- * user data, and to restire the correct gp pointer.
- */
-
-static void
-ffi_prep_incoming_args_UNIX(struct ia64_args *args, void **rvalue,
- void **avalue, ffi_cif *cif);
-
-/* This function is entered with the doctored gp (r1) value.
- * This code is extremely gcc specific. There is some argument that
- * it should really be written in assembly code, since it depends on
- * gcc properties that might change over time.
- */
-
-/* ffi_closure_UNIX is an assembly routine, which copies the register */
-/* state into s struct ia64_args, and the invokes */
-/* ffi_closure_UNIX_inner. It also recovers the closure pointer */
-/* from its fake gp pointer. */
-void ffi_closure_UNIX();
-
-#ifndef __GNUC__
-# error This requires gcc
-#endif
-void
-ffi_closure_UNIX_inner (ffi_closure *closure, struct ia64_args * args)
-/* Hopefully declarint this as a varargs function will force all args */
-/* to memory. */
-{
- // this is our return value storage
- long double res;
-
- // our various things...
- ffi_cif *cif;
- unsigned short rtype;
- void *resp;
- void **arg_area;
-
- resp = (void*)&res;
- cif = closure->cif;
- arg_area = (void**) alloca (cif->nargs * sizeof (void*));
-
- /* this call will initialize ARG_AREA, such that each
- * element in that array points to the corresponding
- * value on the stack; and if the function returns
- * a structure, it will re-set RESP to point to the
- * structure return address. */
-
- ffi_prep_incoming_args_UNIX(args, (void**)&resp, arg_area, cif);
-
- (closure->fun) (cif, resp, arg_area, closure->user_data);
-
- rtype = cif->flags;
-
- /* now, do a generic return based on the value of rtype */
- if (rtype == FFI_TYPE_INT)
- {
- asm volatile ("ld8 r8=[%0]" : : "r" (resp) : "r8");
- }
- else if (rtype == FFI_TYPE_FLOAT)
- {
- asm volatile ("ldfs f8=[%0]" : : "r" (resp) : "f8");
- }
- else if (rtype == FFI_TYPE_DOUBLE)
- {
- asm volatile ("ldfd f8=[%0]" : : "r" (resp) : "f8");
- }
- else if (rtype == FFI_IS_SMALL_STRUCT2)
- {
- asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]"
- : : "r" (resp), "r" (resp+8) : "r8","r9");
- }
- else if (rtype == FFI_IS_SMALL_STRUCT3)
- {
- asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]; ld8 r10=[%2]"
- : : "r" (resp), "r" (resp+8), "r" (resp+16)
- : "r8","r9","r10");
- }
- else if (rtype == FFI_IS_SMALL_STRUCT4)
- {
- asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]; ld8 r10=[%2]; ld8 r11=[%3]"
- : : "r" (resp), "r" (resp+8), "r" (resp+16), "r" (resp+24)
- : "r8","r9","r10","r11");
- }
- else if (rtype != FFI_TYPE_VOID && rtype != FFI_TYPE_STRUCT)
- {
- /* Can only happen for homogeneous FP aggregates? */
- abort();
- }
-}
-
-static void
-ffi_prep_incoming_args_UNIX(struct ia64_args *args, void **rvalue,
- void **avalue, ffi_cif *cif)
-{
- register unsigned int i;
- register unsigned int avn;
- register void **p_argv;
- register unsigned long *argp = args -> out_regs;
- unsigned fp_reg_num = 0;
- register ffi_type **p_arg;
-
- avn = cif->nargs;
- p_argv = avalue;
-
- for (i = cif->nargs, p_arg = cif->arg_types; i != 0; i--, p_arg++)
- {
- size_t z; /* In units of words or argument slots. */
-
- switch ((*p_arg)->type)
- {
- case FFI_TYPE_SINT8:
- case FFI_TYPE_UINT8:
- case FFI_TYPE_SINT16:
- case FFI_TYPE_UINT16:
- case FFI_TYPE_SINT32:
- case FFI_TYPE_UINT32:
- case FFI_TYPE_SINT64:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_POINTER:
- z = 1;
- *p_argv = (void *)argp;
- break;
-
- case FFI_TYPE_FLOAT:
- z = 1;
- /* Convert argument back to float in place from the saved value */
- if (fp_reg_num < 8) {
- *(float *)argp = args -> fp_regs[fp_reg_num++];
- } else {
- *(float *)argp = *(double *)argp;
- }
- *p_argv = (void *)argp;
- break;
-
- case FFI_TYPE_DOUBLE:
- z = 1;
- if (fp_reg_num < 8) {
- *p_argv = args -> fp_regs + fp_reg_num++;
- } else {
- *p_argv = (void *)argp;
- }
- break;
-
- case FFI_TYPE_STRUCT:
- {
- size_t sz = (*p_arg)->size;
- unsigned short element_type;
- z = ((*p_arg)->size + SIZEOF_ARG - 1)/SIZEOF_ARG;
- if (is_homogeneous_fp_aggregate(*p_arg, 8, &element_type)) {
- int nelements = sz/float_type_size(element_type);
- if (nelements + fp_reg_num >= 8) {
- /* hard case NYI. */
- abort();
- }
- if (element_type == FFI_TYPE_DOUBLE) {
- *p_argv = args -> fp_regs + fp_reg_num;
- fp_reg_num += nelements;
- break;
- }
- if (element_type == FFI_TYPE_FLOAT) {
- int j;
- for (j = 0; j < nelements; ++ j) {
- ((float *)argp)[j] = args -> fp_regs[fp_reg_num + j];
- }
- *p_argv = (void *)argp;
- fp_reg_num += nelements;
- break;
- }
- abort(); /* Other fp types NYI */
- }
- }
- break;
-
- default:
- FFI_ASSERT(0);
- }
-
- argp += z;
- p_argv++;
-
- }
-
- return;
-}
-
-
-/* Fill in a closure to refer to the specified fun and user_data. */
-/* cif specifies the argument and result types for fun. */
-/* the cif must already be prep'ed */
-
-/* The layout of a function descriptor. A C function pointer really */
-/* points to one of these. */
-typedef struct ia64_fd_struct {
- void *code_pointer;
- void *gp;
-} ia64_fd;
-
-ffi_status
-ffi_prep_closure (ffi_closure* closure,
- ffi_cif* cif,
- void (*fun)(ffi_cif*,void*,void**,void*),
- void *user_data)
-{
- struct ffi_ia64_trampoline_struct *tramp =
- (struct ffi_ia64_trampoline_struct *) (closure -> tramp);
- ia64_fd *fd = (ia64_fd *)(void *)ffi_closure_UNIX;
-
- FFI_ASSERT (cif->abi == FFI_UNIX);
-
- tramp -> code_pointer = fd -> code_pointer;
- tramp -> real_gp = fd -> gp;
- tramp -> fake_gp = closure;
- closure->cif = cif;
- closure->user_data = user_data;
- closure->fun = fun;
-
- return FFI_OK;
-}
-
-